

Service & API Documentation

Questions?
 developers@tsgglobal.com

v1.06

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 1

Document History... 2

Definitions ... 2
Brand .. 2
Campaign ... 2
Chaincode.. 3
Organization ... 3
Partner .. 3

Introduction .. 3

History ... 3

Services .. 4
GraphQL API .. 4
Portal / Graphical User Interface (GUI) .. 4
Blockchain Node Service .. 4

GraphQL API Overview... 5

General Operations .. 5
Queries ... 5
Mutations .. 5
Subscriptions .. 6

GraphQL API Quick Start Guide ... 7

Variables .. 7

Authorization ... 7
Access token... 8
Refresh token ... 8

Common Errors... 8
Token endpoint .. 8

Postman Examples .. 9
Authorization Token ... 9
Request Organization(s) ... 11
Create a Brand .. 13
Create a Campaign .. 15
Validation errors ... 17

cURL ... 17
Authentication token... 17
Authentication token using a refresh token ... 18
Query the GraphQL Endpoint .. 18
Mutate the GraphQL Endpoint .. 18
Formatting of Queries and Mutations ... 19

.NET examples .. 22
Authentication token... 22
Authentication token using a refresh token ... 22
Query the GraphQL Endpoint .. 23
Mutate the GraphQL Endpoint .. 23

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 2

Example 10DLC Registration Workflow ... 25

Additional Features ... 26

Tagging... 26

Logos .. 26

3rd Party Services Supported By TNID ... 26

Security ... 27

SLA & Performance ... 27

Support .. 27

Document History

Revision Date Description Author
1.00 June 21, 2021 Initial document. ACE
1.01 August 4, 2021 Updated API endpoints ACE
1.02 January 18, 2022 Added Postman and Quick Start ACE
1.03 January 25, 2022 Added curl examples ACE
1.04 January 26, 2022 Added .NET examples ACE
1.05 January 27, 2022 Formatting and layout ACE
1.06 February 3, 2022 Added Create examples ACE

Definitions

Below is a list of definitions to help you better understand the contents of this document:

Brand
The company or entity the consumer believes to be sending the message.

Example: the brand would be “Dunder Mifflin” for any messages that would say “Thanks
for subscribing to the Dunder Mifflin paper stock alert system.”)

Campaign
The use-cases associated with a phone number (e.g. two-factor) – currently relating to
10DLC, or 10-digit long code numbers. Campaigns have different surcharges based on
use-case, brand score, message class, and different through-puts based on the type of
Campaign.

Example: a Campaign for brand “Dunder Mifflin” may be a low-volume mixed campaign,
that includes messages relating to two-factor authentication (2FA) and some basic
marketing.

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 3

Chaincode
Chaincode is programmable code, written in Go, Java, or node.js, and instantiated on a
channel within the blockchain network. Developers use chaincode to develop business
contracts, asset definitions, and collectively-manage decentralized applications. The
chaincode manages the ledger state through transactions invoked by applications. Assets
are created and updated by a specific chaincode and cannot be accessed by another
chaincode.

Organization
A business that is associated with a phone number in the chain-of-custody. This can be a
carrier, reseller, enterprise company, or the brand associated with a number. All
businesses within TNID have used phone numbers and have a business rating (score) that
reflects their fair use of industry resources.

Partner
Represents your downstream customer – an organization that purchases products from
you and leverages phone numbers that you have acquired.

Introduction
This document describes the functional design of the Telephone Number IDentity (TNID)
management application and associated GraphQL API end-points. TNID supports real-
time (HTTP) data write and lookup services, as well as upcoming HTTP (webhook) access
to retrieve notifications as described in this document.

History
TNID was launched in 2021 to provide the communications industry a streamlined phone
number data management system, powered by a private, decentralized blockchain
network through an open-source framework provided through Hyperledger Fabric. TNID
is an aggregation service interconnected with dozens of centralized, independent data
repositories that carriers and enterprise businesses use every day. TNID lives “over-the-
top” of these services and utilizes these 3rd party external-facing APIs to streamline the
number asset management process and reduce development time for businesses looking
to use telephone numbers at scale.

The initial deployment of TNID provides an enhanced 10DLC campaign management
system that interconnects with The Campaign Registry, allowing organizations to manage
both brands and campaigns associated with the 10DLC ecosystem. TNID provides
enhanced functionality by:

• providing native cross-organization transparency into brands and campaigns

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 4

• transmitting data directly to The Campaign Registry, the NetNumber Override
Service Registry (OSR), as well as wireless carriers (e.g. T-Mobile) through Syniverse

• allowing for campaign and brand tagging, as well as the ability to quickly duplicate
and modify existing campaigns with additional phone numbers

Services
Today, we allow users to manage data contained within TNID via three different methods:

GraphQL API
HTTP provisioning services described in this document are available via connection to
TNID cloud infrastructure centers located in the United States.

• Queries are used to read or fetch data values.
• Mutations are used to write, post, or update values.

We provide a GraphiQL (pronounced “graphical”) Explorer to examine our APIs. The
GraphiQLExplorer enables you to interactively construct full queries by clicking through
available fields and inputs without the repetitive process of typing these queries out by
hand. You can find our GraphiQL Explorer and data schemas here:
https://app.tnid.com/graphql

Portal / Graphical User Interface (GUI)
A React-based framework front-end is currently available for general use. The acceptance
environment portal is available here: https://acc.tnid.com The production environment
portal is available here: https://app.tnid.com

Blockchain Node Service
TNID data is also manageable via an immutable, private blockchain network. TNID
currently commits some (but not all) created data to a Hyperledger Fabric ledger (“on-
chain”).

We can invite you to the network via Amazon Web Services’ Managed Blockchain
solution – we simply require your AWS account ID, as well as the email address of a
technical resource. If you do not use AWS, you can still connect to the network either
through an on-prem solution or through a different hosted cloud provider.

Read more about Hyperledger Fabric:
https://hyperledger-fabric.readthedocs.io/en/release-1.2/whatis.html

Read more about AWS Managed Blockchain:
https://aws.amazon.com/managed-blockchain/

https://app.tnid.com/graphql
https://acc.tnid.com/
https://app.tnid.com/
https://hyperledger-fabric.readthedocs.io/en/release-1.2/whatis.html
https://aws.amazon.com/managed-blockchain/

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 5

GraphQL API Overview
TNID supports the provisioning and retrieval of data through a GraphQL API. You can, if
you choose, interact with our GraphQL as you would a RESTful API using a POST. You
can read more about GraphQL here: https://graphql.org/

General Operations
Below is a list of operations that you can perform via the GraphQL API we provide:

Queries

• organization(s)
o Query basic information about one or more Organizations (if you have

their unique ID).
• brand(s)

o Query information about one or multiple Brands (provided by customers
and data in The Campaign Registry) and the Organization associated with
that brand.

• campaign(s)
o Query information about one or more campaigns Campaign (provided by

customers and data in The Campaign Registry), and the Brand associated
with that campaign.

• usecases
o Query a list of use-cases that are provided by The Campaign Registry in

relation to 10DLC.
• tnidHistory

o Query any historical changes to a phone number record/asset and view
the chain-of-custody associated with a phone number (where you stand
in the chain, and those above and below you are not hidden).

• searchNumbers
o Query information about a phone number, including any NNID, Brand,

or Campaign associated with it.
• event(s)

o Query recent Events that (may) affect your Organization, such as a new
Brand being created, a new Partner being registered, or a new Campaign
being generated.

• statistics
o View basic information relating to your Orgs active campaigns, brands,

numbers, and pending Events.
Mutations

• createPartner
o Create a child Organization underneath your Organization that

represents a customer of yours.
▪ Up to 10 “levels” in the chain-of-custody are currently supported.

• updateOrganization

https://graphql.org/

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 6

o Update basic business information, and contact information.
• uploadOrganizationLogo

o Upload an image and associate it with an Organization.
▪ Recommended 500px square.

• createBrand
o Create a Brand using re-using many of the basic fields required to create

an Organization. Organizations may have one or more Brands, and there
is no limit currently to the number of Brands an Organization may have.

• createBrandNonBlocking
o [Pending]

• updateBrand
o Update basic information relating to a Brand.

• updateBrandLogo
o Update the logo associated to a Brand

▪ Recommend 500px square.
• deleteBrand

o Remove a Brand from TNID
• createCampaign

o Create a Campaign in the Campaign Registry and associate phone
numbers with the Campaign once it is approved.

o Phone numbers can be supplied as a comma-separated list as a string
(e.g. “[“14252437709”,”14252437710”]” in order to be accepted.

• updateCampaign
o Update some fields relating to a Campaign (that The Campaign Registry

allows without having to delete and start over) or add more tags to a
Campaign.

• deactivateCampaign
o Deactivate a Campaign and remove it/end it in The Campaign Registry.

Subscriptions

• organizationAdded
o Receive a JSON-formatted notification whenever a new

organization/partner is added.
• organizationUpdated

o Receive a JSON-formatted notification whenever an Organization or
Partner is updated.

• campaignAdded
o Receive a JSON-formatted notification whenever a new Campaign is

added.
• brandAdded

o Receive a JSON-formatted notification whenever a new Brand is added.
• brandUpdated

o Receive a JSON-formatted notification whenever a Brand is updated.
• brandDeleted

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 7

o Receive a JSON-formatted notification whenever a Brand is deleted.

GraphQL API Quick Start Guide
The TNID API uses GraphQL as its interface. GraphQL uses only one endpoint and only
POST requests are valid. This document contains information to authenticate and to
execute queries and mutations using Postman, cURL, .net and other
languages/frameworks.

Variables
The following table lists variables that are common between the examples. The variable
values must be substituted with the current values that can differ from customer to
customer and between the different environments (acceptance and production).

Environment Variable Value
Acceptance [Token_Url] http://ci-tnid-portal-keycloak-acc-westus-

001.westus.azurecontainer.io:8080/auth/realms/t
nid/protocol/openid-connect/token

Acceptance [GraphQL_End
point]

https://acc.tnid.com/graphql

Acceptance Schema
endpoint

https://acc.tnid.com/graphql?sdl

Acceptance [Client_ID] tnidgraphqlapiclient
Acceptance [Client_Secret] <Your client secret>, received from support
Acceptance [User_Name] <Your username>, received from support
Acceptance [Password] <Your password>, received from support

Production [Token_Url] http://ci-tnid-portal-keycloak-prd-westus-

001.westus.azurecontainer.io:8080/auth/realms/t
nid/protocol/openid-connect/token

Production [GraphQL_End
point]

https://app.tnid.com/graphql

 Schema
endpoint

https://app.tnid.com/graphql?sdl

Production [Client_ID] tnidgraphqlapiclient
Production [Client_Secret] <Your client secret>, received from support
Production [User_Name] <Your username>, received from support
Production [Password] <Your password>, received from support

Authorization
Every call to the TNID endpoint must be authenticated and authorized. This is
implemented using a Bearer Token.

http://ci-tnid-portal-keycloak-acc-westus-001.westus.azurecontainer.io:8080/auth/realms/tnid/protocol/openid-connect/token
http://ci-tnid-portal-keycloak-acc-westus-001.westus.azurecontainer.io:8080/auth/realms/tnid/protocol/openid-connect/token
http://ci-tnid-portal-keycloak-acc-westus-001.westus.azurecontainer.io:8080/auth/realms/tnid/protocol/openid-connect/token
https://acc.tnid.com/graphql
https://acc.tnid.com/graphql?sdl
http://ci-tnid-portal-keycloak-prd-westus-001.westus.azurecontainer.io:8080/auth/realms/tnid/protocol/openid-connect/token
http://ci-tnid-portal-keycloak-prd-westus-001.westus.azurecontainer.io:8080/auth/realms/tnid/protocol/openid-connect/token
http://ci-tnid-portal-keycloak-prd-westus-001.westus.azurecontainer.io:8080/auth/realms/tnid/protocol/openid-connect/token
https://app.tnid.com/graphql
https://app.tnid.com/graphql?sdl

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 8

Access token
To request a token, a call must be made to a token endpoint, using a number of credentials.
When the credentials are validated, the endpoints responds with an access token with a
limited lifetime (300 seconds or 5 minutes). After that a new access token must be
requested.

Refresh token
To prevent supplying a username and password every time the token endpoint is called,
the token endpoint can also supply a refresh token that can be supplied instead of the
user/password credential. To indicate that the refresh token is used, the parameter
grant_type must have the value refresh_token while in the case of user/password
credentials the value password is used.

Common Errors
Below are some common errors that can be returned, and how to fix them:

Token endpoint

Response:
{"error":"invalid_grant","error_description":"Invalid user credentials"}

Resolution:
Check your username and/or password.

Response:
{"error":"unauthorized_client","error_description":"Invalid client secret"}

Resolution:
Check if the correct client secret is used. These differ between the Acceptance and the
Production environment.

Response:
{"error":"invalid_client","error_description":"Invalid client credentials"}

Resolution:
Check if the client id is correct.

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 9

Postman Examples
Postman (https://www.postman.com) is an API platform for building and using API’s. It is a
tool that can be used to execute queries against various API’s, like REST and GraphQL.

Authorization Token
Every POST to the TN.ID endpoint must contain an Authentication Header that contains a
Bearer Token. To request a token, use the following data (Collection -> Authentication):

For Access Token URL, enter the url [Token_Url]. The Scope field is optional.

After clicking Get new Access Token, Postman should respond with

https://www.postman.com/

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 10

In the next dialog, the Access Token and Refresh Token are displayed.

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 11

Request Organization(s)
In Postman, create a new Request and make sure that in the Body tab GrapQL is selected:

For {{graphql_endpoint}}, use the value for [GraphQL_Endpoint].

On the Authorization tab, choose Bearer Token and enter the token received earlier:

When clicking Send, the response should return the organization id that the user has
access to:

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 12

This id can be used for subsequent calls for this organization to the TN.ID GraphQL
endpoint, for example, get a list of Brands:

Using the organizationId as a GraphQL variable:

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 13

Create a Brand
Step 1: Set endpoint

Set the Method to POST and the url to the correct url for the environment.

Step 2: Set authorization
In the tab Authorization set the Type to Bearer Token and enter the token that is acquired from the
token endpoint in the Token field:

Step 3: Set Body
In the tab Body, make sure that the body type is set to GrapQL:

In the QUERY field, enter the mutation to create a Brand:

The fields that you want to receive from the created Brand can be listed immediately from the
mutation. In this case, only the id field is requested.

In the GRAPHQL VARIABLES field, enter the variables in the following format, so that the $input variable
is correctly mapped to the “input” variable field:

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 14

Step 4: Send request
Click Send and wait for a response. If the response is successful, the id of the created Brand is returned:

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 15

Create a Campaign
Step 1: Set endpoint

Set the Method to POST and the url to the correct url for the environment.

Step 2: Set authorization
In the tab Authorization set the Type to Bearer Token and enter the token that is acquired from the
token endpoint in the Token field:

Step 3: Set Body
In the tab Body, make sure that the body type is set to GrapQL:

In the QUERY field, enter the mutation to create a Campaign:

The fields that you want to receive from the created Campaign can be listed immediately from the
mutation. In this case, only the id field is requested.

In the GRAPHQL VARIABLES field, enter the variables in the following format, so that the $input variable
is correctly mapped to the “input” variable field:

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 16

Step 4: Send request
Click Send and wait for a response. If the response is successful, the id of the created Campaign is
returned:

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 17

Validation errors
The input data is validated and if any validation errors are found, an error object is returned with the
details, for example, when an invalied value for the Country field is entered:

cURL
The following examples have been setup using curl in a Windows command prompt. Note
that curl needs other settings when used otherwise. For example, the continuation-on-
next-line character is ^ when using cmd.exe, but ` when using powershell, or \ when using
linux. Also, the use of quote characters (single or double) may differ.

Authentication token
To retrieve an authentication token, use the following command, while substituting the
values from the variable table:

Request
curl -X POST [Token_Url] ^
--data-urlencode "grant_type=password" ^
--data-urlencode "client_id=[Client_ID]" ^
--data-urlencode "client_secret=[Client_Secret]" ^
--data-urlencode "user_name=[User_Name]" ^
--data-urlencode "user_name=[Password]"

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 18

Response
The response is in the form of a Json-formatted string:
{
 "access_token":"eyJ<...>XI_Q",
 "expires_in":300,
 "refresh_expires_in":1800,
 "refresh_token":"eyJ<...>f4s",
 "token_type":"Bearer",
 "not-before-policy":0,
 "session_state":"da3bda59-6840-43bb-b641-577088f922ca",
 "scope":"profile organizations email"
}

Authentication token using a refresh token
With the refresh token a new access token can be retrieved, without using username and
password:

Request
curl -X POST [Token_Url] ^
--data-urlencode "grant_type=refresh_token" ^
--data-urlencode "client_id=tnidgraphqlapiclient" ^
--data-urlencode "client_secret=[Client_Secret]" ^
--data-urlencode "refresh_token=eyJ<...>f4s"

Response
{
 "access_token":"ey<…>86lk",
 "token_type":"Bearer",
 "not-before-policy":0,
 "session_state":
 "d9282a42-8b9a-4a15-97e5-5fa9a40cfd2a",
 "scope":"profile organizations email offline_access"
}

Query the GraphQL Endpoint
With the access token, call the GraphQL endpoint using the following command:

Request
curl -X POST "[GraphQL_Endpoint]" ^
--header "Authorization: Bearer ey<…> v9sA" ^
--header "Content-Type: application/json" ^
--data-raw "{\"query\":\"<QUERY>\",\"variables\":{}}"

Mutate the GraphQL Endpoint
Use the following command structure:

Request

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 19

curl -X POST "[GraphQL_Endpoint]" ^
--header "Authorization: Bearer ey<…> v9sA" ^
--header "Content-Type: application/json" ^
--data-raw "{\"query\":\"mutation mutationName ($input: MutationInput) { mutationName
(input: $input) { id } }\",\"variables\":{\"input\":{ \"var1\":\"value1\" }}}"

Formatting of Queries and Mutations
The JSON-format of the query and mutation is as follows:

{
 "query":"<Query>",
 "variables":<Variables>
}

Note that a mutation is also a query. A mutation operation is identified within the query. A
query-only is formatted as:

{
 "query": "{ entity { field1, field2 } }",
 "variables": <variables>
}

A mutation is formatted as:
{
 "query": "mutation myMutation ($input: EntityInput)

{
myMutation (input: $input) { field1, field2 }

}"
}

Request Organization(s)

The GraphQL query for requesting an organization is:
{
 organizations {
 id
 }
}

The formatted query with the escaped double quotes is then:
curl -X POST "[GraphQL_Endpoint]" ^
--header "Authorization: Bearer ey<…> v9sA" ^
--header "Content-Type: application/json" ^
--data-raw "{\"query\":\"{ organizations { id } }\",\"variables\":{}}"

The response is a Json-formatted string:
{
 "data": {
 "organizations": [

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 20

 {
 "id": "8e91475dfd664c7eb2b512accaaf7752"
 }
]
 }
}

Create Brand

To create a brand, use the following mutation and variables:

Mutation:
mutation createBrand ($input: CreateBrandInput) {
 createBrand (input: $input) {
 id
 }
}

Variables:
{
 "input": {
 "organizationId": "61bd7af075fe4e7b830a4b74adda8b78",
 "entityType": "SOLE_PROPRIETOR",
 <..SKIPPED..>
 "vertical": "REAL_ESTATE"
 }
}

Note: All double quotes must be escaped using a backslash ‘\’ character.

The formatted request including variables is then:

curl -X POST "[GRAPHQL_Endpoint]" ^
--header "Authorization: Bearer eyJh<…>E6Yg" ^
--header "Content-Type: application/json" ^
--data-raw "{ \"query\":\"mutation createBrand ($input: CreateBrandInput)
{ createBrand (input: $input) { id }}\", \"variables\": { \"input\":
{ \"organizationId\": \"00883676c13c4992aa46225c0f3036d9\", \"entityType\":
\"SOLE_PROPRIETOR\", \"firstName\": \"First\", \"lastName\": \"Last\",
\"displayName\": \"First Last\", \"companyName\": \"My Company Name\",
\"commercialContactPhoneNumber\": \"+1999999999999\",
\"technicalContactPhoneNumber\": \"+1999999999999\", \"financialContactPhoneNumber\":
\"+1999999999999\", \"street\": \"1 E Kennedy Blvd\", \"city\": \"City\", \"state\":
\"WA\", \"postalCode\": \"12345\", \"country\": \"US\", \"technicalContactEmail\":
\"no-reply@email.com\", \"commercialContactEmail\": \"no-reply@email.com\",
\"financialContactEmail\": \"no-reply@email.com\", \"brandRelationship\":
\"BASIC_ACCOUNT\", \"vertical\": \"REAL_ESTATE\" } } }"

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 21

The response is a json-formatted string, containing the requested fields (in this case: only
id) from the created Brand:

{"data":{"createBrand":{"id":"9bc7c8346e484f1c9e7fb8d8ed559f03"}}}

Create Campaign
Following the previous example, the same formatting can be used to create a Campaign:

Mutation:
mutation createCampaign ($input: CreateCampaignInput) {
 createCampaign (input: $input) {
 id
 }
}

Variables:
{
 "input": {
 "brandId": "61bd7af075fe4e7b830a4b74adda8b78",
 "vertical": "TECHNOLOGY",
 <..SKIPPED..>
 "description": "Basic"
 }
}

Note: All double quotes must be escaped using a backslash ‘\’ character.

The formatted request including variables is then:

curl -X POST "https://acc.tnid.com/graphql" ^
--header "Authorization: Bearer eyJh<…>4KzSA" ^
--header "Content-Type: application/json" ^
--data-raw "{ \"query\":\"mutation createCampaign ($input: CreateCampaignInput)
{ createCampaign (input: $input) { id }}\", \"variables\": { \"input\":
{ \"brandId\": \"9bc7583463714f6c9e7fbfd8ede59f03\", \"vertical\": \"TECHNOLOGY\",
\"description\": \"Basic marketing.\", \"sampleMessages\": [\"Sample1\",
\"Sample2\"], \"usecase\": \"SOLE_PROPRIETOR\", \"subUsecases\": [\"MARKETING\"],
\"affiliateMarketing\": false, \"ageGated\": false, \"directLending\": false,
\"subscriberHelp\": true, \"embeddedLink\": false, \"embeddedPhone\": false,
\"numberPool\": false, \"subscriberOptin\": true, \"subscriberOptout\": true,
\"phoneNumbers\": [\"19999999999\"], \"autoRenewal\": false, \"helpMessage\": null,
\"messageFlow\": null, \"referenceId\": null } } }"

The response is a json-formatted string, containing the requested fields (in this case: only
id) from the created Campaign:

{"data":{"createCampaign":{"id":"c893923965963d37a6abfff33a02de9c"}}}

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 22

.NET examples
These examples are created with help of the nuget package RestSharp
(https://restsharp.dev/)

Authentication token
To receive an authentication token

using RestSharp;

var clientId = "[Client_ID]";

var clientSecret = "[Client_Secret]";

var userName = "[User_Name]";

var password = "[Password]";

var tokenEndpoint = "[Token_Url]";

var client = new RestClient(tokenEndpoint);

var request = new RestRequest();

request.AddParameter("grant_type", "password");

request.AddParameter("client_id", clientId);

request.AddParameter("client_secret", clientSecret);

request.AddParameter("username", userName);

request.AddParameter("password", password);

var response = await client.ExecutePostAsync(request);

Console.WriteLine(response.Content);

Authentication token using a refresh token
With the refresh token a new access token can be retrieved, without using username and
password:
using RestSharp;

var clientId = "[Client_ID]";
var clientSecret = "[Client_Secret]";
var tokenEndpoint = "[Token_Url]";
var refreshToken = "[YOUR REFRESH TOKEN]";

var client = new RestClient(tokenEndpoint);
var request = new RestRequest();

request.AddParameter("grant_type", "refresh_token");
request.AddParameter("client_id", clientId);
request.AddParameter("client_secret", clientSecret);
request.AddParameter("refresh_token", refreshToken);

var response = await client.ExecutePostAsync(request);

Console.WriteLine(response.Content);

https://restsharp.dev/

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 23

Query the GraphQL Endpoint

using RestSharp;

const string ApplicationJson = "application/json";

var authToken = "YOUR AUTH TOKEN";
var endpoint = "[GraphQL_Endpoint]";

var graphQlQuery = "{ \"query\": \"{ organizations { id } }\" }, \"variables\":

\"{}\"";

var client = new RestClient(endpoint);
var request = new RestRequest();

request.AddHeader("Authorization", $"Bearer {authToken}");
request.AddHeader("Content-Type", ApplicationJson);
request.AddBody(graphQlQuery, ApplicationJson);

var response = await client.ExecutePostAsync(request);

Console.WriteLine(response.Content);

Mutate the GraphQL Endpoint
Use the following command structure:
using RestSharp;

const string ApplicationJson = "application/json";

var authToken = "YOUR AUTH TOKEN";

var endpoint = "GRAPHQL_ENDPOINT";

var graphQlMutation = "{ \"query\":\"mutation mutationName ($input:

MutationInput) { mutationName (input: $input) { id } } \", \"variables\": {

\"input\": { \"var1\":\"value1\" }} }";

var client = new RestClient(endpoint);

var request = new RestRequest();

request.AddHeader("Authorization", $"Bearer {authToken}");

request.AddHeader("Content-Type", ApplicationJson);

request.AddBody(graphQlMutation, ApplicationJson);

var response = await client.ExecutePostAsync(request);

Console.WriteLine(response.Content);

Classes and Serialization
For serializing classes to the json format, either System.Text.Json (since .net 4.8 or
netstandard 2.0) or the nuget package Newtonsoft.Json can be used. For example, the
following simple class structure can be used for creating a more robust request:

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 24

namespace TNIDSamples

{

 public class QueryRequest

 {

 public string Query { get; set; }

 public Variables Variables { get; set; }

 }

 public class Variables

 {

 public Input Input { get; set; }

 }

 public class Input

 {

 public Guid OrganizationId { get; set; }

 // Insert other fields here

 }

}

These classes can be serialized to create a mutation:

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 25

using RestSharp;

using System.Text.Json;

using TNIDSamples;

const string ApplicationJson = "application/json";

var authToken = "YOUR AUTH TOKEN";

var endpoint = "GRAPHQL_ENDPOINT";

var graphQLRequest = new QueryRequest

{

 Query = "mutation createBrand ($input = CreateBrandInput) { createBrand

(input: $input) { id }}",

 Variables = new Variables

 {

 Input = new Input

 {

 OrganizationId = Guid.NewGuid()

 }

 }

};

var jsonOptions = new JsonSerializerOptions { PropertyNamingPolicy =

JsonNamingPolicy.CamelCase };

var json = JsonSerializer.Serialize(graphQLRequest, jsonOptions);

var client = new RestClient(endpoint);

var request = new RestRequest();

request.AddHeader("Authorization", $"Bearer {authToken}");

request.AddHeader("Content-Type", ApplicationJson);

request.AddBody(json, ApplicationJson);

var response = await client.ExecutePostAsync(request);

Console.WriteLine(response.Content);

Console.ReadLine();

Example 10DLC Registration Workflow
Below is a basic step-by-step process of registering your organization, creating brands and
campaigns, and mapping numbers for approved messaging in the 10DLC ecosystem:

1) Register Your Organization
a. Get an API key by emailing developers@tsgglobal.com and providing your

organization details (including legal business name, address, and tax ID
number).

2) Register Brands
a. Create Brands for either your own Organization (if you are sending

outbound messages where the end-user believes your company is the
sender) or create Brands for your customers/downstream clients.

i. This can be done in the GUI or via the createBrand mutation.

mailto:developers@tsgglobal.com

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 26

3) Create Campaigns
a. Create Campaigns for your Brands using the GUI or the createCampaign

mutation.
b. Standard use case campaigns are approved immediately for qualified Brands.

Generally, some special use campaigns are dependent on MNO review
times.

c. You can associate numbers to the Campaigns in the createCampaign
mutation, or at the end of the wizard in the UI.

d. Once the Campaign is approved, numbers are mapped to the Campaign, and
TNID will forward any relevant information to the required databases.

Additional Features
Below are features that are available in TNID to assist with number and campaign
management:

Tagging
Users can add multiple unique tags to both campaigns and to brands upon creation. You
are also able to add tags post-creation. Tags can be used to search for specific campaigns
or brands based on keywords you may find useful. You can filter by tags on the primary
Campaign and Brand pages.

Logos
Users can upload image logos to Partners or Brands, allowing for faster recognition of
Partners or Brands.

3rd Party Services Supported By TNID

At this time, TNID currently manages data with the below industry registries, databases, or
services:

Service or Registry Description More Information
The Campaign
Registry

10DLC
management

https://www.campaignregistry.com/

NetNumber
Override Service
Registry (OSR)

10DLC
management
and NNID
information

https://www.netnumber.com/

Syniverse 10DLC
management
and forwarding

https://www.syniverse.com

https://www.campaignregistry.com/
https://www.netnumber.com/
https://www.syniverse.com/

 Service & API Documentation

© 2022 TNID Confidential – Do Not Share Page 27

of campaigns to
T-
Mobile/Sprint

This list will be updated as we integrate with additional services.

Security

No VPNs or other special network configurations are required at this time to access the
TNID portal or GraphQL APIs.

SLA & Performance

There are currently no imposed API limits. Please refer to your beta agreement for more
information.

Support

Email us at: developers@tsgglobal.com

mailto:developers@tsgglobal.com

	Document History
	Definitions
	Brand
	Campaign
	Chaincode
	Organization
	Partner

	Introduction
	History
	Services
	GraphQL API
	Portal / Graphical User Interface (GUI)
	Blockchain Node Service

	GraphQL API Overview
	General Operations
	Queries
	Mutations
	Subscriptions

	GraphQL API Quick Start Guide
	Variables
	Authorization
	Access token
	Refresh token

	Common Errors
	Token endpoint

	Postman Examples
	Authorization Token
	Request Organization(s)
	Create a Brand
	Step 1: Set endpoint
	Step 2: Set authorization
	Step 3: Set Body
	Step 4: Send request

	Create a Campaign
	Step 1: Set endpoint
	Step 2: Set authorization
	Step 3: Set Body
	Step 4: Send request

	Validation errors

	cURL
	Authentication token
	Authentication token using a refresh token
	Query the GraphQL Endpoint
	Mutate the GraphQL Endpoint
	Formatting of Queries and Mutations
	Request Organization(s)
	Create Brand
	Create Campaign

	.NET examples
	Authentication token
	Authentication token using a refresh token
	Query the GraphQL Endpoint
	Mutate the GraphQL Endpoint
	Classes and Serialization

	Example 10DLC Registration Workflow
	Additional Features
	Tagging
	Logos

	3rd Party Services Supported By TNID
	Security
	SLA & Performance
	Support

